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Abstract
A new SSM/I algorithm is described that is based on near

real-time data fusion with portions of operational ice charts
derived from RADARSAT, OLS or AVHRR data. The aim
of this is to enable parts of the ice chart where there is no
cloud-free imagery or SAR data to be completed using an
SSM/I algorithm that is tuned to the region and time
associated with the ice chart. The algorithm is a linear
combination of partial concentrations from the NASA Team
and Bootstrap algorithms together with lower variance
principal components of SSM/I data.  The algorithm is
designed for near real time use in production of operational
ice charts.

INTRODUCTION

The U.S. National Ice Center (NIC), under sponsorship of
the U.S. Navy, U.S. Coast Guard, and National Oceanic and
Atmospheric Administration (NOAA), is tasked with
mapping the ice covered oceans of the world using both
remotely sensed and in situ observations. In order to achieve
this mission, the NIC generates weekly ice charts that are
based on data from a wide variety of sources and maintains a
body of trained, expert ice analysts and forecasters. In
compiling weekly ice charts, the analysts interpret
RADARSAT, Defense Meteorological Satellite Program
(DMSP) Operational Line-scan Sensor (OLS) data, NOAA
Advanced Very High Resolution Radiometer (AVHRR) data
and DMSP Special Sensor Microwave / Imager (SSM/I) ice
concentration data, in decreasing order of spatial resolution.
The SSM/I ice concentration data are used to “fill in” areas
where higher resolution data are not available. A weakness of
this procedure is that the SSM/I ice concentration data,
currently available through processing with the CAL/VAL
[1] and NASA Team [2] algorithms, contains errors and
artifacts that preclude its use in a fully quantitative manner,
as reviewed in [3]. Furthermore, the ice charts are only as
good in quality as their weakest data source that, partly
through fundamental sensor limitations, is the SSM/I ice
concentration data.

Figure 1. Context for the SSM/I Interpolation algorithm.

THE SSM/I INTERPOLATION ALGORITHM

A new data fusion algorithm, called the SSM/I
Interpolation (SI) algorithm, has been designed to attempt to
overcome some of the deficiencies of “conventional” SSM/I
ice concentration algorithms. The context for the SI
algorithm is illustrated in Figure 1. This shows how the SI
algorithm ingest both an “intermediate” ice chart created
from RADARSAT, OLS and AVHRR data alone, and SSM/I
antenna temperatures, received in near real-time from the
NOAA Center for Environmental Prediction. The ice
concentration data from the ice chart are converted from
vector to raster format in the projection and sampling of the
SSM/I antenna temperature data. The ice chart values are also
converted from a range of ice concentrations to a single value
(for example, from a coded value of “79” meaning 70-90%
concentration, to 80%).
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Figure 2. SSM/I Interpolation algorithm.

Figure 2 summarizes the SI algorithm. The SSM/I antenna
temperatures are converted to brightness temperatures and
thence into attributes. A linear model is used to specify
mapping coefficients that relate the attributes calculated from
the SSM/I data to ice concentrations from the “intermediate”
ice chart, as shown in Figure 2. A least squares method is
used to calculate the coefficients (Ai, i=0,7) by treating the
ice concentrations from the intermediate ice chart as the
dependent variable and the SSM/I attributes as the
independent variables.

There are a range of potential attributes (di, i=0,7) that
could be used in this algorithm. The attributes include partial
concentrations from the NASA Team and Bootstrap
algorithms and lower variance principal components of the
data. No assumption is made about the physical meaning of
these attributes. The justification for including lower variance
principal components is work that suggests a relationship of
these components to thin ice types that some conventional
SSM/I algorithms are poor at detecting [3,4,5]. Using the
equations that specify the first five principal components of
the SSM/I data from the entire Arctic generated on 9
December, 1998, and multiplying these by controlled
brightness temperatures of known surface types confirms that
this is the case (Figure 3). The 3rd to 5th components all show
a sensitivity to new ice that is not apparent in the first two
components.

Figure 3. Normalized principal components of data from
controlled observations, where the eigenvectors are generated
using principal components from the entire Arctic on 9
December, 1998. The observations are derived from [4], [5]
and [6].

RESULTS

Figure 4 shows the results of applying this algorithm to data
from the Barents Sea in December, 1998.

Figure 4. Results of applying the SI algorithm, and other
algorithms, to data from the Barents Sea, 7 December 1998.
The intermediate ice chart (labeled “partial” ice chart), on
which the SI algorithm is based, is shown for comparison
(lower right).
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Figure 5. Mean difference (% ice cover) between ice
concentrations measured by algorithms and ice
concentrations from intermediate ice charts, measured as a
function of date for the Barents Sea.

Figures 5 and 6 show statistics measuring the behavior of the
algorithm as a function of date through November and
December 1998 in the Barents Sea. It can be seen that the SI
algorithm achieves a significant improvement in terms of the
general algorithm bias and the mean level of deviation.

These results are interesting, in terms of demonstrating a new
method of evaluating SSM/I algorithms and by showing the
level of improvement that can be achieved by tuning the SI
algorithm to the ice chart. The results do not, however,
provide an indication of the overall level of accuracy
achieved by the SI algorithm, as the ice charts themselves
contain errors. The SI algorithm can only be as good in
quality as the ice chart itself, so if the ice analysis procedure
contains errors, then these will be inherited by the algorithm.
Nevertheless, as these intermediate ice charts are based on
analysis of high and moderate resolution satellite data by an
analyst who has access to climatology data, weather
predictions, forecast model output and the previous weeks’
ice chart, it is expected that the ice chart will represent the
best synthesis of information available for most polar
regions,

Figure 6. Mean absolute difference (% ice cover) between ice
concentrations measured by algorithms and ice
concentrations from intermediate ice charts, measured as a
function of date for the Barents Sea.

CONCLUSIONS AND RECOMMENDATIONS

This study has shown how high resolution satellite data can
be used to constrain analyses of lower resolution data in an
operational environment. The SI is suitable for operational
use as it provides very little impact on the analyst in terms of
their time, yet has demonstrated an ability to significantly
reduce the discrepancy between the information derived from
SSM/I and other sensors. The transition of this technique to
an operational status is planned at NIC.
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